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J.  Phys.: Condens. Matter S (1991) 7421-7433. Printedin the UK 

Increased second harmonic output power using walk-off 
compensation in birefringent crystals 

T Yanagawatt and L K Samantag 
t Basic Research Laboratories, Nippon Telegraph and Telephone Corporation, 
Musasl~no-slli, Tokyo 180 Japan 

Reccived 28 January 1991 

Abstract. A new technique utilizing the double refraction walk-& of a precisely 
cut p s r  of KTP crystals and a mode-locked Nd:VAG larer to obtain efficient second 
hamianinic generation (SHO) is reported for the f ist  time. This technique leads to a 
fourfold increment in second harmonic output power compared with that of a single 
crystal and would open up a number of potential new applications. 

1. Iiitrodnctioii 

The second liarmonic generation (SHG) of laser light is a well established technique 
capable of being carried out with a high degree of efficiency. Continuous work in the 
field of parametric iiiteractions has resulted in optical amplifiers and oscillators that  
can be tuned over a range of an octave or more. SHG by mixing two strong collinear 
waves at  a fundamental frequency often uses a technique which phase matches acentric 
crystals to increase efficiency and this same technique can also be used with acentric 
biaxial crystals. SHG with fundamental waves of the same polarization is termed type 
I ,  while that witli orthogonal polarization is type 11. An additional disadvantage of 
phase-matching at  6' # 90°, usually termed critical phase-matching (CPM), is that  
there is a walk-off of the electromagnetic wave from the polarization wave due to 
double refraction of waves with a finite aperture. However, phase-matching at 6' = 90°, 
termed non-critical phase-matching (NCPM), has obvious merit for device applications 
due to its additional advantage of having no such walk-off due to double refraction. 
Thus, if the refractive indices can be adjusted so as to achieve NCPM under a variety of 
parameters such as temperature, crystal chemical composition, non-collinearity, stress, 
etc, then the walk-off effect could be eliminated and the efficiency of various non-linear 
phase-matched interactions increased. 

However, the stringent phase-matching conditions required for the non-linear pro- 
ceSSes do not permit the process to be adjusted to achieve NCPM. Therefore, walk-off 
due to double refraction has a deleterious effect on the efficiency. Energy conversion 
from the fundamental to the harmonic wave is a complicated function of propaga- 
tion direction, polarization, index properties and sign as well as the magnitude of the 
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second-order polarizability tensor. This consideration makes it is very important to 
eliminate the effect of walk-off from the various non-linear interactions since walk-off 
compensation plays a key role in the study of such various current and attractive 
topics as quantum non-demolition measurement, squeezed states, etc. In this light, a 
detailed study of walk-off compensation has been made for the first time using a pair 
of biaxial crystals, in this case KTP [l]. The results are very encouraging with regard 
to future apphations and are discussed in detail in this paper. 

T Yanagawa and L K Samanfa 

2. Crystal cliaracteristics and properties 

The compound potassium titanyl phosphate [2-51, commonly known as KTP (chemi- 
cal formula KTiOPO,), has emerged as being superior among the non-linear materials 
used for laser radiation conversion. With a high non-linear optical coefficient com- 
parable with that of Ba,NaNh,O,, (BNN), and a high optical strength, as well as 
being chemically inert with a high mechanical stability and free from induced optical 
inhomogeneity, KTP is characterized by broad spectra, temperature and angular band- 
widths that make i t  the best choice for generating SH from Nd:YAG laser radiation. 
KTP also has the advantage that it can be phasematched using either type I or I1 
interactions. Furthermore, the crystal is transparent in the 350-4500 nm region and 
the superiority of the improved flux technique over the hydrothermal growth method 
results in the absence of the 0-H absorption peak at  2800 nm which usually appears 
in the flux method. 

The KTP crystal belongs to orthorhombic point group mm2 and usually corre- 
sponds to point group mmm, both of which are included in the space group Pna2,, 
even though x-ray analysis indicates the presence of eight molecules per unit cell. 
The crystal structure of KTP is composed of alternating PO, tetrahedra and distorted 
TiO, octahedra witli potassium ions situated in channels between them. The large 
non-linearity of this compound is thought to be due to the fact that the Ti-0 bond 
is the shortest in the crystal. 

3. Soiiie aspects of secoud harmonic generation 

Harmonic generation is now commonly used to extend the laser wavelength range 
down to the UV or XUV region and SHG is presently a standard technique [E-81 for 
generating tunable laser radiation in different parts of the electromagnetic spectrum 
depending on the materials and incident pump radiation used. I n  particular, the 
region around - 500 nm has aroused considerable technological interest because of its 
applications in under water communications. Garmash et a/ 191 reported SHG using a 
1079.E nm Nd:YA10, laser (YALO), while blue light (459 nm) radiation was generated 
by Baumert el a l  [lo] using NCPM interactions caused by sum-mixing 1064 and 809 nm 
with KTP and Kat0 [ll] and Fan e t  a /  [12] have reported SHG of Nd:YAG lasers a t  
1064 nm. The most frequent SHG applications are to frequency double the output 
of Nd:YAC lasers to produce a green beam X = 532 nm from X = 1064 nm and to 
generate tunable UV radiation down to 210 nm by frequency doubling tunable dye 
lasers. 

We have experimentally investigated type I1 phasematching since it is attractive 
because of its large angular acceptance, bandwidth and high non-hear  coefficient. 
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The theoretical analysis by Mehendale and Gupta [13] showed that reduced conversion 
efficiency due to walk-off occurs more in type I1 than type I phase-matching. Contrary 
to the idea of Boyd and Kleinman [14] which was to use arbitrary tight focusing with a 
limited parameter gain due to walk-off, Kuizenga [15] reported an increased parametric 
gain in a non-linear crystal with double refraction (walk-off) using elliptical beams 
since walk-off only occurred in the plane-of-propagation direction and the optic axis 
while full advantage could still be taken of tight focusing in the non-walk-off plane. 
Our experimental arrangement completely eliminated double refraction walk-off by 
utilizing a technique for doubling the crystal length (using a pair of crystals rcith the 
same length and a proper orientation) and, thus, we achieved almost four times the 
output power available from a single crystal. 

Phase-matching allows enhanced SHG to be achieved and accomplished in 
anisotropic crystals by making birefringent equal dispersion at the commonly known 
phasematching angle. However, SHG is limited by double refraction [16, 171 since it is 
known that the energy propagation direction or Poynting vector is given by the nor- 
mal to the index surface for any phase propagation direction. The double refraction 
measurement is given by the angle p, which for a positive uniaxial crystal is given as 

For an ordinary wave both vectors are parallel, but for an extraordinary wave, the 
Poynting vector deviates from the phase propagation by the angle mentioned where 
the polarization in equation (1) is reversed for a negative crystal. 

Double refraction causes harmonic separation (walk-off) from the fundamental 
wave for beams with a finite diameter and, thus, ultimately limits the effective vol- 
ume over which the interaction takes place. For p # 0, the aperture length I ,  is 
approximately a l p  where a is the beam diameter. When I ,  + 00 with p = 0, the 
SHG increases, but it is limited by the diffraction effect instead of the aperture length. 
Two additional problems are that the double refraction effect is more pronounced the 
longer the sample is and that the spot size is smaller. Even though the phase-matching 
characteristics of the crystals limit the use of crystals for a no walk-off condition, they 
can be eliminated by NCPM, also known as 90' phasematching, with additional ad- 
vantages in the acceptance angle and effective non-linear coefficient over CPM. This 
has been achieved in LiNbO, by temperature tuning, but the disadvantage of temper- 
ature tuning [I81 is that the crystal temperature often has to be held within a strict 
tolerance limit to maintain phase-matching. 

The sHG of an in-focus laser beam has been analysed, but Boyd and Kleinman 
[I41 pointed out that the criteria for optimum interaction using a collinear focused 
beam occur when both beams have the same focus and confocal parameter rather 
than the same spot size. If the effects of beam divergence on focusing and the Boyd 
and Kleinman focusing factor h ( B , t )  are included, SHG efficiency can be defined as 
1191 

where the double refraction parameter B = $p(Iku)l/', the focusing parameter 5 = 
1/6,  and b is the confocal parameter. For a small walk-off angle which means small E, 
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that is for a crystal length which is shorter than the aperture length, h(B,E) + h(B,E) 
and in the near-field approximation with negligible double refraction h(B,E) -+ <. 

Since the gain is limited by double refraction, the introduction of a useful crystal 
length I e R ( I )  is very important, IeR ~ r :  Ao/2nwp2. Under a strong double refraction limit 
such as I,, < I ,  the gain reduction factor h,(B,[) -+ lr/4Bz and I in equation (2) 
should be replaced by Ice .  Thus, if p # 0, the aperture limits the interaction so 
that  even a small walk-off angle will reduce the SH efficiency by as much as 30 times 
for a given crystal length and focusing in turn necessitates adjustment of the crystal 
refractive indices to achieve NCPM if it is possible according to the phase-matching 
condition. 

Therefore, attaining NCPM to avoid double refraction is not an easy task. However, 
Ashkin el al [20] reported phase-matched SHG without double refraction using a KDP 
waveguide structure. This is possibIe due to the availability of large size KDP crystals 
because of the improved crystal growth technology for this type of crystal only. The 
same technology cannot be used for the established non-linear crystals [21] because of 
sue, shape and quality and the more important point that it is not possible to obtain 
SH power, which was observed in our experimental arrangement. 

4. Experimental details and results 

This article reports an experimental arrangement, shown in figure I(Q), t o  obtain 
sufficient Si3 power using a pair of KTP crystals that is possible with existing meth- 
ods. A modelocked Nd:YAG laser is used to pump KTP crystals for SH generation of 
532 nm with an average fundamental input power of 4.7 W and a pulsewidth of about 
90 1)s. Two KTP crystals cut from the same piece of a well grown crystal (as per our 
requirement) to a size of 5 mm x 5 mni x 5 mm and oriented for type 11 interaction at  
1064 nm were used. Although the refractive indices allow the use of both type I and 
II for SHG, de* is too small to permit type I phase-matching; therefore, type I1 was 
automatically preferred. 

Power 
Meter 

- 
1st 2nd Prism 

(a) (b) 

Figure 1. ( a )  Experimentalsetup for measurement of SH ( 2 w )  output power. Mode- 
locked N ~ V A G  laser and a pair of KTP crystals are used to generate a 2w wave. The 
fundamental (w) and 2w waves are separated by an SFS prism. (b )  The phase- 
matdling condilion ( 0  = 909, 4 i;: 22') of the KTP wystd. SH Output power is 
measured BS a fwiction of d. 

The type II  phase-matching condition in aKTP crystal is shown in figure I(6).  The 
laser beam is set normal to the z-direction and oaxis indicating 6 = 90° is cut in the 



Walk-ofl compensation in birefringent cryslals 7425 

XY-plane at angle d from the X-direction, where r$ is the phase-matching angle (i.e. 
4 zz 22' in this case). When the polarization direction of the fundamental YAG laser 
(1064 nm) is vertical, the c-axis of the crystal should be tilted 45' from the Z-axis 
and the polarization direction of the laser beam to obtain the maximum SH output 
power. The two KTP crystals used in this arrangement are labelled first and second 
in the laser positioning shown in figure l (a ) .  

At the beginning of the experiment one KTP crystal is positioned and adjusted 
to obtain the maximum SH power in the phase-matching direction. The optimum 
polarization direction of the pumping beam can be obtained by rotating the crystal 
around the beam propagation direction and is defined as $ = 0, where $ is the angle 
between the c-axis and the reference direction defined as optimum. This result is 
shown in figure 2 as a function of $. The SH output at 532 nm is separated from the 
1064 nm fundamental wave by the SF6 prism shown in figure l(a) and the average 
power w a s  measured with a coherent 212 power meter with a Si head. It becomes 
clear that the SH output has four peaks. 

-Tr -12 0 TI12 TI 

Rotation q~ 
Figure 2. SH output power oi one KTP crystal as a function of rotation angle + as 
shown in f ipre  1 ( b ) .  

The result can be analysed with second-order polarizability tensor dij  of the KTP 
and direction cosines [22]. The relationships between angles 0, 4 and 6 are illustrated 
in figure 3. Angles 9 and 4 have already been described. 6 is the angle between one 
polarization direction, e,, of the fundamental wave and ZH, where ZH is a vector 
tangential to the fundamental propagation direction at a given point H .  Polarisation 
vectors e, and ez are the two components of the fundamental wave and are per- 
pendicular to each other. These amplitudes are defined as E> and E> using the 
function of crystal rotation $. The amplitude of the input electric field is defined as 
E,. Therefore, the SH power realized from the second-order non-linear polarizability 
in the XY-plane is 

(3) 
A2 
8 Ipz,lz = -{I + COS(4$)} 

where 

A =  (d1,sin2~+dz,ws2r$)sinOE~. (4) 
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Z 

Figure 3. The relationship of the propagation direction k, polarieacion directions 
el and ea. and coordinates ( X ,  Y and 2) represented by angles 8 ,  4 and 6. 

This equation is derived in the appendix and easily explains the SHG of the KTP crystal 
shown in figure 2. 

The SH power from a pair of  crystals has also been measured. To begin with, 
when the second crystal is adjusted to obtain the maximum SH power, the first crystal 
placed in front of the laser beam sbould obtain maximum total power near the phase- 
matching condition. Then, the first crystal is rotated while the second crystal remains 
fixed. Measurement of the SH power with a pair o f  crystals with properly oriented 
c-axes shows a uniqne solution for obtaining maximum power. Even more interesting 
is that this is observed at only one particular orientation of the two crystals in which 
complete walk-off compensation takes place, thus yielding an extremely high SH output 
power almost four times larger than that obtained with a single crystal [l], as shown 
in figure 4. Moreover, SH output power was also observed when the input facet was 
turned to output in the second crystal. This is shown in figure 5 ( b )  along with the 
results taken before turning shown in figure 5 ( a ) .  It seems that the value of $ giving 
maximum SH output power in ( U )  shifts by 180’ from that in ( b ) ,  which will be 
discussed later. This difference may originate from a difference in crystal orientation, 
as shown in figures G(a) and ( b ) .  

SH output enhanced by walk-off compensation resulting from the same arrange- 
ment as figure 4 is shown in figure G(a), and it is suppressed by the configuration shown 
in figure 6(6). The electric field of the ordinary wave is conserved in ( U ) ;  however, the 
signs for the X and Y elements in the wave’s field are different for each crystal and 
suppress each other in ( b ) .  

With similar treatment in the one crystal case, the SIT power as a function o f  the 
rotation angle of the first crystal can be simply analysed as described in the appendix. 
If pump depression is assumed not to exist, the SH electric fields of each crystal can 
be simply superposed, and the first crystal’s SH electric field component of the second 
crystal’s XY-plane combined with the second crystal’s SH field. The combined SH field 
o f  the XY-plane and the first crystal’s on the second crystal’s Z-axis can then provide 
the total SH power. As a result, the normalized total SH power o f  the configurations 
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0- 
-TI -12 0 nl2 n 

Rotation w 

Figure 4. sK output power of KTP crystal pair BE a function of rotation angle qj 
of the fmt crystal. The w&-oK compensation condition is realised at @ = 0 which 
corresponds to the maugement in which the -axes of the two crystals are opposite 
to each other. 

6 
3 
0 1 
a 
1 
(I) 

n n I 2  0 n/2 n 
Rotation I 

(a) 

? n 
3 
B 
b 
a. 
L 
(0 

n n I 2  0 nl2 n 
Rotation I 

(b) 

Figure 5 .  S A  output power diKerence due to 
facet replacement of the second crystal BS a func- 
tion of the rotation angle + of the fmt crystal: 
(a)  around the walk-oR compensation condition; 
(6) the other arrangement of the second crystal 
facet replacement to opparite side. 

(b) 
Figure 6 .  Crystaldisplacement figure. Arrange 
ments ( n )  and (a )  correspond to  figure 5 ( a )  and 
( b ) ,  respectively. 

shown in figure 6 ( a )  and ( b )  can be written as 

A2 lPiEta'/' = g{cos(4$ )  cos(3$) f cos$ + 3). (5) 
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The signs of the terms cos(trl,) and cos rl, correspond to figure 5(a) and ( b ) ,  that is (a) 
is positive and ( b )  is negative. The results of equation ( 5 )  are shown in figures 7(a) 
and ( 6 ) .  It is true that these analytical processes do not include the walk-off effect; 
however, the characteristic tendency ofthe total power to be dependent on the rotation 
angle of the first crystal can clearly be seen. Whether or not walk-off compensation 
takes place is conveniently confirmed by the SH output power at its maximum point. 
The experimental results can be said to be in good agreement with the analytical ones 
at this viewpoint. 

T Yanagawa and L K Samanla 

~~ 

Rotation w 

Rotation 

(b) 
Figure 7.  Tlie analytical results of nonnalizd st l  output power: (a )  the around 
walk-off compsiwation condition corresponds to figures 5(a)  and 6(r ) .  (6) The other 
corresponds to figures 5 ( 6 )  and 6(b).  

It should be noted that the differences in detail between figures 4 and 5(a) seems 
to be caused by reflection and scattering changes due to  subtle optical path changes. 
This occurs, as the crystal facets are not anti-reflection-coated in this experiment and 
the crystals include points with sIight local damage. 

5. Discussions and conclusion 

Since the useful crystal length is limited by the Poynting vector walk-off (aperture 
effect) and group velocity differences result in reduced efficiency in harmonic genera- 
tion, a large difference between the fundamental wave and the SH is significant. Our 
results on enhanced SH output power clearly point out that walk-off compensation 
can be aclrieved with two properly cut crystal orientations. Non-collinear matching 
between an e-ray and o-ray in which the angle between the two input wavevectors 
inside the crystal is made just equal but opposite in magnitude to the walk-off of the 
e-ray could be utilized to obtain enhanced output power as there is a complete overlap 
of the input beams throughout the entire crystal. However, this is often uncertain due 
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to the phase-matching characteristics of the crystals. Although various approaches 
to increase the SH output power have been tried, it was not possible to achieve this 
target experimentally using a single crystal. A longer crystal may increase power, but 
i t  is limited by double refraction walk-off. However, when one crystal length is cut 
into two pieces of equal length and properly aligned a considerable increase in output 
power results while eliminating the deleterious effect of the double refraction walk-off 
inherent to any phasematched non-linear interactions (except 90' phase-matching). 
I t  is interesting to note in this connection that the value of de, (1.1 x lo-* esu) of one 
KTP crystal obtained from the relation 

using our measured data, which are 4.7 W fundamental average input and 3 mW SH 
average output power, agrees well with other reported values. I t  should also be noted 
in this connection that the SH pulsewidth is about 0.7 times that of the fundamental 
one and the beam diameter is around 900 pm, while the SF6 prism loss, including 
reflections, was experimentally found to be about 30%. 

Compared with other well established non-linear crystals such as BBO, KTP would 
be a more suitable non-linear crystal for femtosecond difference frequency generation 
(DFG) because of its larger de= and the elimination of double refraction, although 
the same can he applied to all phasematched non-linear interactions. Thus, the 
teclinique we are proposing reflects an inherent nature towards overcoming the long- 
standing problem of double refraction walk-off in phase-matched non-linear interac- 
tions in anisotropic crystals and should have far-reaching consequences, not only for 
the progress of non-linear optics, but also for that of quantum optics, which includes 
quantum non-demolition measurements [23, 241 (QND) using SHG, parametric down 
conversion [25] and the generation of squeezed states [26]. Therefore, this technique 
should emerge as very important and useful in years to come. 
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Appei idix 

If light propagates in the k direction (8,4) with the e, and e2 polarizations shown in 
figure 3, the arbitrary electric field can be written as 

E, = E:e, -t E:e2 (AI) 

where E: and E? are electric field components in the e, and e2 directions, respec- 
tively. The e, and e2 polarized waves have electric field components (E>) j  and 
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(j 4, 2, 3) in rectangular coordinates and are given by the direction cosines (a:‘) 
and ( a i 2 ) ,  

where the direction cosines (a;’)  and (a;’) are expressed by 

1 cos B cos 4 cos 6 -sin 4 sin 6 
( a y )  = c o s B s i n ~ c o s 6 + c o s ~ s i n 6  

- sin 0 cos 6 

-cos 0 cos 4 sin 6 - sin 4 cos 6 

sin 8 sin 6 

( 
- e o s 8 s i n ~ s i n 6 + c o s ~ c o s 6  (‘45) 

Second-harmonic (SI<) polarization Pzu induced by the Ej and E,, electric fields in 
biaxial crystals was reported by Ito et a[ [22] and is represented by 

(pZu)i = d < j E E j E k  (A61 

where di j t  is the tensor element ofsecond-order polarizabilityand i, j and k correspond 
to the A’, Y and Z coordinates. When SH polarization (P.zu)j radiates as the ez wave, 

p z  = Qfl(Pzw)i (A7) 

therefore, SH polarization P;; of the type I1 phase-matching condition is 

P;; = a f l d i j k a ? a p E > E z .  (-48) 

d j j k  can be rewritten with Kleinman’s symmetry as dij (j = 1,2, . . . ,6), because inter- 
changing E> and E:’ causes no significant change in the physics. The d j j  of the KTP 
crystal (m-monoclinic) are given by 

0 0 0  
0 0 0 dz4 

d31 d32 d33 

Thus 

P i ,  = ( ( d Z 4 -  dl , ) (3cosZ6- I)sinb’cos8sin2~sin6 

- 3(d3, COS’ 4 + d32 sin’ 4) sin B cos’ 8sin2 6 cos 6 

- (d31 sin’ 4 + d,, cos2 4) sin 8cos 6(3 cosz 6 - 2) 

- dS3 sin3 0 sin’ 6 cos 6)E: E? 

deK(8, C $ ) E > E ~ .  
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Polarization Rotation 

Figure A l .  Polarization rotation + around Figure A2. Polarization and crystal rotation 
propagation the k-axis. E:' and EZa are vec- around the propagation axis. Polarization r(r 
tor components of electric fields E, to el and e2 tation + corresponds to revelse crystal rotation 
directions correspond to coordinates Y and X.  -+, which is shown as the change to the fint 
Ed, coniponent is perpendicular to  the other. crystal XI-axis from the second (Xz). 

On the other hand, our experiments only studied SH as the o-wave. When SH 
polarization is defined as the e2 direction at 6 = 0, the direction cosines a y ,  a;' are 
described by 

cos 0 cos 4 
(a:') = cosBsin4 ( -sin0 ) 

The polarization rotation is represented as $, where $ is defined as the angle from 
the line shown in figure A I ,  rotated - ~ / 4  from the e2 direction at 6 = 0. In this case, 
the electric field components are defined by 

E: = -E, sin($ - ~ / 4 )  

E: = E, COS($ - ~ / 4 )  

P2, = -7 WS(Z$) 

A I (d15 sin2 4 + d,, cos2 +)E: sin0 

(-413) 

(A14) 

( A W  

(A161 

then 
A 
2 

where E, is the amplitude of the input electric field. At the conclusion of each crystal 
case, SI$ power a t  the power meter can be estimated by equation (A15) and rewritten 
as 
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The polarization rotation rl, is equal to the reverse rotation of the crystal around the k 
direction shown in figure A2. Then, crystal rotation -$ gives the same Pz,; however, 
the direction of Pzw rotates with the crystal. When + = rr, Pz, = -A/2  is the same 
as the value for $ = 0, although it is produced in the opposite polarization space. 
Suppose that the SH polarization radiated from the first crystal exists at coordinates 
X, and U, of the second crystal. In figure 6(b), the difference between the two crystals 
is only in the direction of the c-axis. Therefore, the polarization components (P2u)x ,  
and (PZw),,, at the X ,  and U, coordinates of the second crystal are represented by Paw 
multiplied by cos(-$) and sin(-+), respectively. According to the discussion earlier, 
Pzw in &he -Y, direction at rl, = rr becomes A / 2  and the total SH power lP;z'"'12 behind 
the second crystal becomes 

A2 

8 

T Yanagawa and L K Samanta 

(AIS) IP;zt"Iz = - {cos(4$)-2cos(t$)-2cos$+ 3) 

where rl, = 0 represents the c-axis of the first crystal opposite to that of the second 
crystal i n  figure G(b) which gives IPi$a'12 = 0. 

In the case of figure 6(a), the second crystal is rotated by J around the Z-axis 
from the position of the first crystal; therefore, the rotation tensor of the coordinate is 
needed. Suppose that rotation < of the Z-axis is defined as R&) and the J rotation 
of the L-axis is R,; moreover, R,, is defined as R,, R,(x)R,. Then, continuous 
J rotations of the two axes of 2 and k are given by 

- cos 24 - sin 24 

0 -1 

If the direction cosines for R,, are expressed as R,,(aS1) and R,,(ap), then 

- cos 0 cos 4 
R,,(nje') = -cosBsin$ = - ( $ I )  ( sine ) 

- sin 4 
RZr(aJC1) = ( CO;+ ) = -(ay) 

P z  = Rza(a~)dijkRZ,(a~')Rz,(a~)E~E~ = -a"d.. a. e l  at e Z E e t E e 2  
I v k  J 

('422) 
A 
2 

= - H COS(^$). 

Since PZw for the first crystal is tile same as in equation (A22), the positioning of the 
second crystal shown in figures G(a) and ( b )  will decide the difference betwecn the 
results of figures 7(u) and (6). As in the former case (b) ,  figure 6(a) should be shown 
by the nexl equation. 

(A231 
[p;:ta'lz= ~ { c O S ( 4 $ ) + 2 ~ 0 ~ ( 3 $ ) + 2 c o s $ +  A2 3) 

where rl, = 0 represents the case in ivhich the positions of the c-axes are opposite and 
the crystal's X-axis directions are different from each other, as shown in figure 6(a),  
and the maximum value becomes [PEa'12 = A Z .  
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